Climate Change & Human Health: Local and National Perspective

Amir Sapkota, PhD **Associate Professor**

March 17th, 2016

Maryland Climate Coalition

Climate Stewards of Greater Annapolis

Outline

- BACKGROUND
 - Our changing climate
 - Extreme events
 - Alteration in plant phenology
- LOCAL PERSPECTIVES
 - Extreme events and Adverse Health in MD
 - Respiratory disease: Asthma
 - ► Cardiovascular disease: Myocardial Infarction
 - ► Foodborne disease: Salmonellosis
- NATIONAL PERSPECTIVES
 - Changes in plant phenology and allergic rhinitis
- > QUESTIONS/DISCUSSION

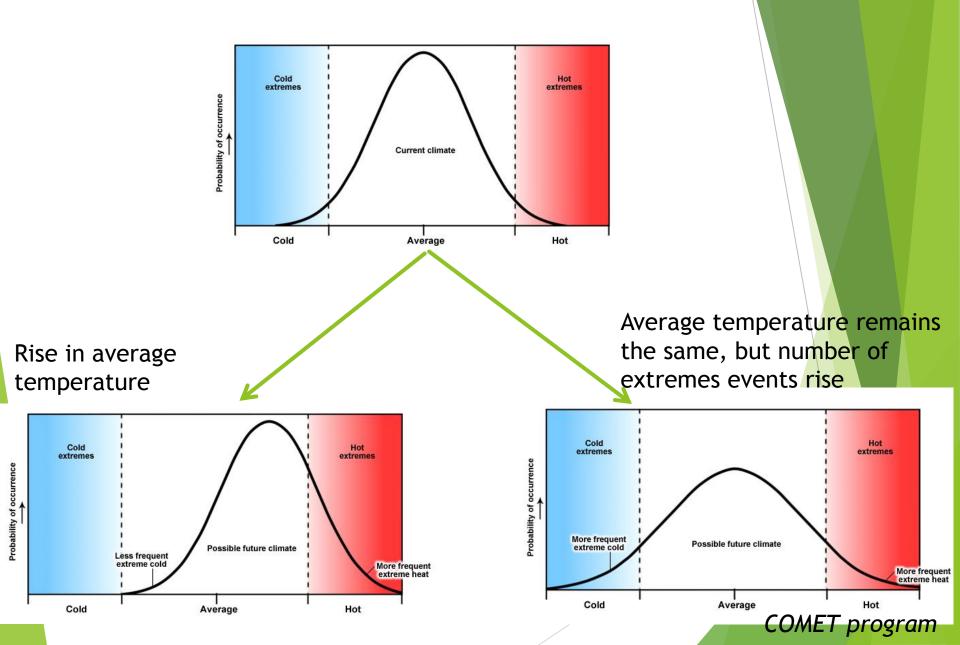
Definition

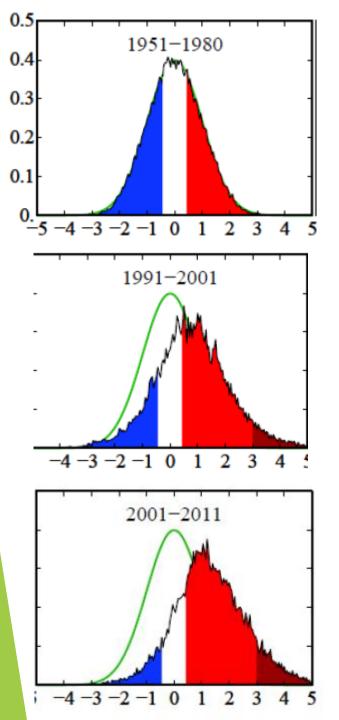
Weather:

- State of atmosphere at a given place and time
 - ► Temperature, precipitation, wind speed/direction etc.

Climate:

- Aggregated <u>pattern</u> of weather averages, extremes, timing, spatial distribution) of...
 - hot & cold; cloudy & clear; humid & dry; drizzles & downpours; snowfall, snowpack, & snowmelt; blizzards, tornadoes, & typhoons


Climate Change:


- Altered patterns of Climate
- Deviation from the long term averages
 - Global average temperature is just one measure of the state of the global climate, but perhaps the only measure that is talked about.

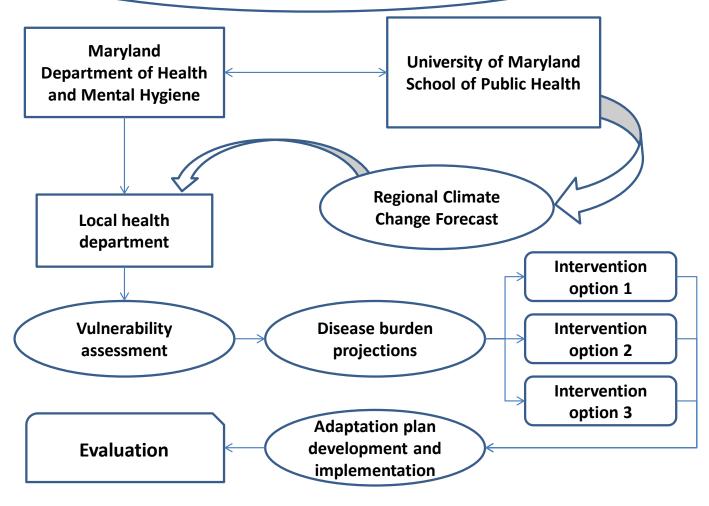
Challenge

- Climate Change: Decadal time scale
 - Most epidemiological studies last only few years.
 - How do you link health effect with something that happens in decadal scale?
- Metric we use to measure exposure:
 - Concentration
 - Duration
 - Frequency

Extreme Temperatures

Occurrence of summertime temperature anomalies over land, relative to 1951-1980, in the unit of Standard Deviation

1991-2001


2001-2011

Looking into the Future...

- In response to our changing climate, extreme events will become:
 - ► More frequent
 - More intense
 - Longer lasting (Field et al. 2012)

Question: How such extreme events will impact Human Health?

Maryland Public Health Climate Change Strategy

Vulnerability Assessment

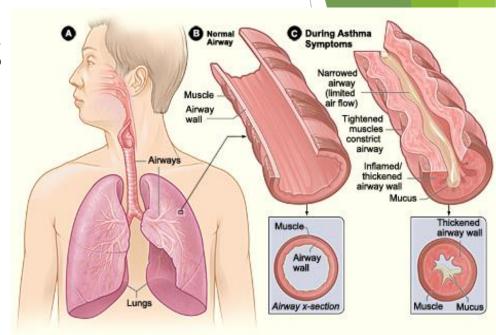
- ▶ 4 jurisdictions
 - Baltimore City
 - Prince George's County
 - Washington County
 - Wicomico County
- Health outcomes being analyzed
 - Asthma
 - Myocardial Infarction
 - Salmonellosis,
 - Campylobacteriosis,
 - Injuries

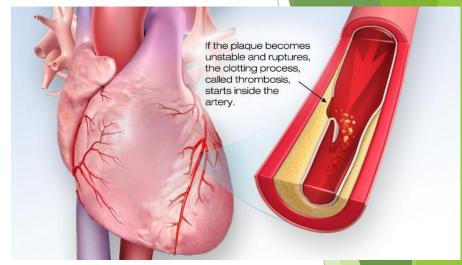
Background: Asthma

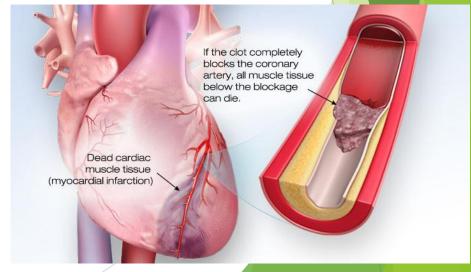
Chronic lung disease that inflames and narrows the airways, making breathing difficult

Over 25 million Americans are currently living with asthma (2010).

It costs US economy over \$56 billion/year




Figure: NHLBI , nhlbi.nih.gov/health/health-topics/topics/asthma


Background: Acute Myocardial Infarction

Commonly called Heart Attack

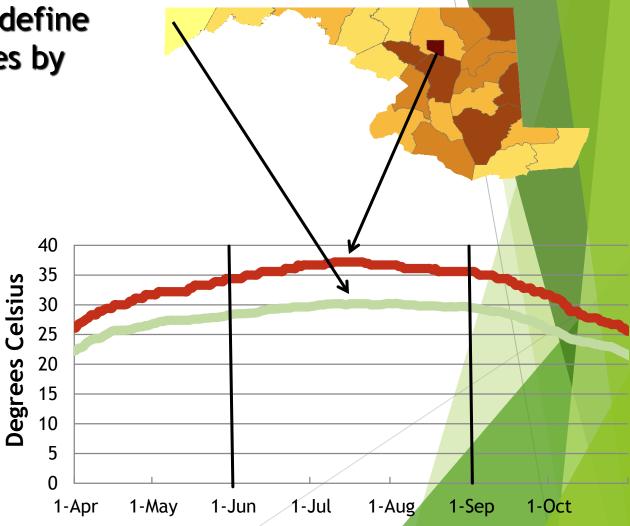
- Occurs when blood flow that supplies oxygen to heart muscle is severely reduced/stopped.
- Over 700,000 Americans suffer from AMI every year.

Image: American Heart Association

Background: Salmonella Infection

- Causes an estimated 1.2 million cases of acute gastroenteritis, including 23,000 hospitalizations.
- Infected people develop diarrhea, fever, and abdominal cramps, lasting 4-7 days.
- Many kinds, but Salmonella Typhimurium and Salmonella Enteritidis are the most common.
- More common during warm season.

Demographic Characteristics of Health Data (2000-2012)

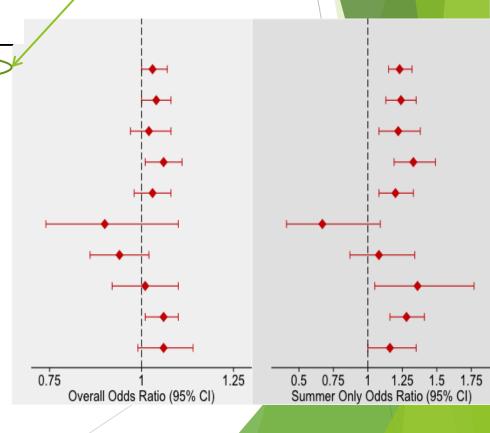

CHADACTEDICTICS	Asthma Hospitalization		Heart Attack Hospitalization		Salmonellosis	
CHARACTERISTICS	# of	% of	# of	% of	# of	% of
	Cases	Cases	Cases	Cases	Cases	Cases
Total	115,923	100	138,665	100	9,529	100
Age Group						
Under 5	18,043	16	58,036	42	2,380	25
5 to 17	16,649	14	80,629	58	1,661	17
18 to 64	59,462	51			4,462	47
65 and older	21,768	19			979	10
Gender						
Female	70,695	61	59,849	43	5,023	53
Male	45,226	39	78,812	57	4,475	47
Race/Ethnicity						
Non-Hispanic White	47,151	41	95,555	69	3755	39
Non-Hispanic Black	58,347	50	28,293	20	2,509	26
Hispanic	3,047	3	1,632	1	515	5
Other	3,479	3	5,987	4	293	3
Unreported	3,899	3	7,198	5	2,457	26
Season						
Winter	30,436	26	36,511	26	1,377	15
Spring	31,103	27	35,460	25	1,853	19
Summer	20,776	18	32,670	24	3,777	40
Fall	33,608	29	34,024	25	2,520	26

Extreme Heat Events in MD

Example: ETT95 values on July 15th

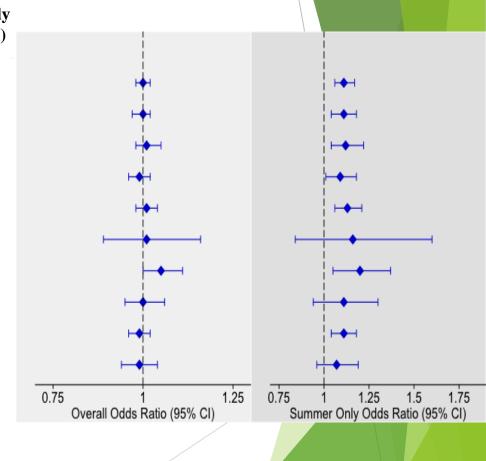
(Range: 30-36 C)

 Threshold used to define extreme heat varies by county and by day


Summary of Methods

- Link Extreme event data and Health data
- Perform statistical Analysis
 - Shows if extreme events are related to disease risk
 - ▶ If yes, how much.
- Estimate Extreme event in the future from climate projections
- Estimate disease burden in the future.

Extreme Heat Events and Risk of ER Visit for Asthma


Overall Summer Only Characteristics Subgroups OR (95%CI OR (95%CI) ΑII All of Maryland 1.03 (1.00, 1.07) 1.23 (1.15, 1.32) Gender 1.04 (1.00, 1.08) 1.24 (1.13, 1.35) Female Male 1.02 (0.97, 1.08) 1.22 (1.08, 1.38) Race/Ethnicity White 1.06 (1.01, 1.11) 1.33 (1.19, 1.49) Black 1.03 (0.98, 1.08) 1.20 (1.08, 1.33) Hispanic 0.90 (0.74, 1.10) 0.67 (0.41, 1.09) Age Group 0 to 4 0.94 (0.86, 1.02) 1.08 (0.87, 1.34) 5 to 17 1.01 (0.92, 1.10) 1.36 (1.05, 1.77) 18 to 64 1.06 (1.01, 1.10) 1.28 (1.16, 1.41) 65 and over 1.06 (0.99, 1.14) 1.16 (1.00, 1.35)

Related to 1 day increase in extreme heat event

Extreme Precipitation Events and Risk of Elevants Visit for Asthma

Characteristics	Subgroups	Overall OR (95%CI)	Summer Only OR (95%CI)
All	All of Maryland	1.00 (0.98, 1.02)	1.11 (1.06, 1.17)
Gender	Female	1.00 (0.97, 1.02)	1.11 (1.04, 1.18)
	Male	1.01 (0.98, 1.05)	1.12 (1.04, 1.22)
Race/Ethnicity	White	0.99 (0.96, 1.02)	1.09 (1.01, 1.18)
	Black	1.01 (0.98, 1.04)	1.13 (1.06, 1.21)
	Hispanic	1.01 (0.89, 1.16)	1.16 (0.84, 1.60)
Age Group	0 to 4	1.05 (1.00, 1.11)	1.20 (1.05, 1.37)
	5 to 17	1.00 (0.95, 1.06)	1.11 (0.94, 1.30)
	18 to 64	0.99 (0.96, 1.02)	1.11 (1.04, 1.18)
	65 and over	0.99 (0.94, 1.04)	1.07 (0.96, 1.19)

Differences in Risk of Hospitalization for Asthma Related to Extreme Heat Event

County/State	Season	OR (95% Confidence Interval)
Maryland	Summer	1.22 (1.15 - 1.33)
Baltimore City	Summer	1.36 (1.14 - 1.64)
Prince George's County	Summer	1.20 (1.01 - 1.41)
Washington County	Summer	1.76 (1.09 - 2.84)
Wicomico County	Summer	1.22 (0.77 - 1.94)

Extreme Heat Event and Heart Attack in Maryland

Exposure to Extreme Heat Event and Risk of Hospitalization for Heart Attack (2000-2012)

		Extreme Heat Event
Characteristic	Cases	OR and 95% CI
Overall Model	32,670	1.11 (1.05 - 1.17)
Gender		
Male	18,722	1.12 (1.05 - 1.21)
Female	13,948	1.09 (1.00 - 1.19)
Age		
Age 18-64	14,067	1.10 (1.02 - 1.20)
Age >=65	18,603	1.11 (1.04 - 1.20)
Race		
Non-Hispanic White	22,343	1.09 (1.02 - 1.16)
Non-Hispanic Black	6,730	1.27 (1.12 - 1.44)

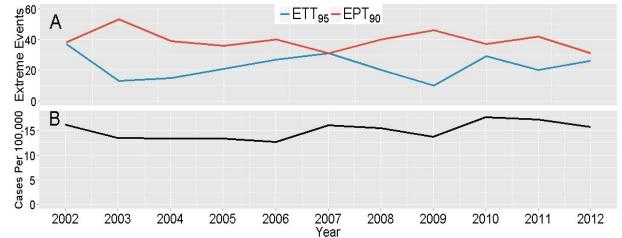
Analysis restricted to summer months only

Exposure to Extreme Heat Event and Risk of Hospitalization for Heart Attack (2000-2012)

		Extreme Heat
		Event
Characteristic	Cases	OR and 95% CI
Non-Hispanic White		
Age 18-64	8,697	1.01 (0.91 - 1.13)
Age 65+	13,646	1.14 (1.05 - 1.24)
Non-Hispanic Black		
Age 18-64	3,616	1.37 (1.16 - 1.62)
Age 65+	3,113	1.16 (0.96 - 1.40)
Male		
Age 18-64	9,734	1.14 (1.04 - 1.26)
Age 65+	8,988	1.10 (0.99 - 1.22)
Female		
Age 18-64	4,333	1.02 (0.87 - 1.19)
Age 65+	9,615	1.13 (1.02 - 1.24)

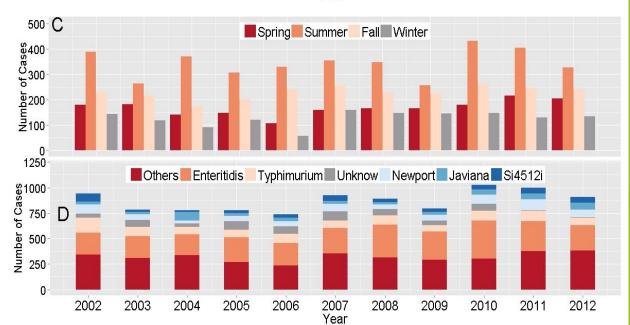
Analysis restricted to summer months only

Differences in Risk of Hospitalization for Heart Attack Related to Extreme Heat Across Counties


County/State	Summer Only Odds Ratio 95% CI)
Maryland	1.11 (1.05, 1.17)
Baltimore City	1.43 (1.16, 1.75)
Prince George's County	1.06 (0.91, 1.24)
Wicomico County	1.00 (0.74, 1.35)
Washington County	0.96 (0.71, 1.29)

Extreme Event and Salmonellosis in Maryland

Salmonellosis: Temporal Trends


Extreme Temperature & Precipitation

Incidence Rate

Cases by Season

Cases by Serotype

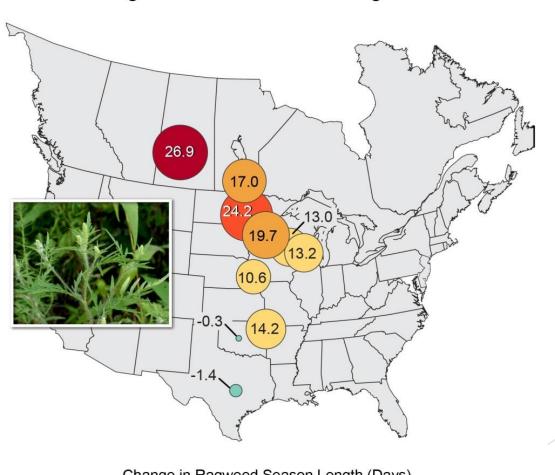
Extreme Events and Salmonellosis

	Characteristics	Extreme Temp. (ETT ₉₅)	Extreme Precip. (EPT ₉₀)
Overa	ll Model	1.041[1.013-1.069]	1.056[1.035-1.078]
Seaso	n		
	Spring	0.961[0.926-0.997]	1.013[0.984-1.042]
	Summer	1.045[1.014-1.077]	1.017[0.989-1.046]
	Fall	1.004[0.964-1.045]	1.037[1.015-1.060]
	Winter	0.962[0.928-0.998]	1.012[0.972-1.053]
Geogr	aphical Location		
	Coastal Counties	1.051[1.023-1.081]	1.071[1.044-1.099]
	Non-Coastal Counties	1.015[0.977-1.055]	1.036[1.017-1.054]

Considerably larger effect observed in coastal counties compared to non-coastal counties

Summary

- In Maryland, exposure to extreme heat increases risk of hospitalization for Heart Attack and Asthma.
- Both extreme heat and extreme precipitation increase risk of Salmonella infection.
- ► The risk of *Salmonella* infection is higher in coastal communities.


Climate Change, Alteration in Plant Phenology and Risk of Allergic Rhinitis

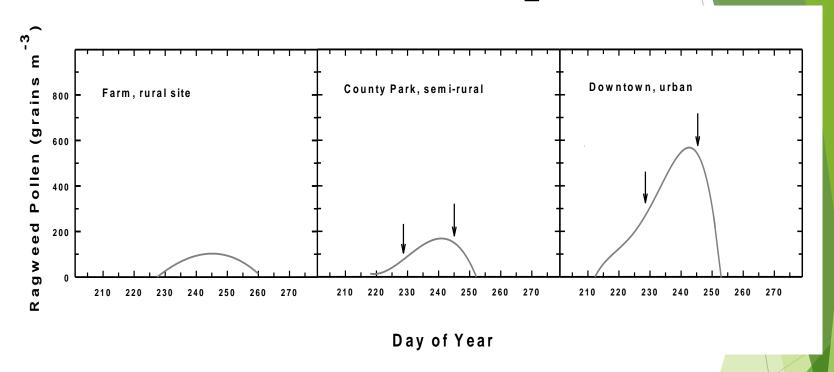
Plant Phenology

- Nature's calendar
- Timing of seed germination
- Timing of leafing
- Timing of particular flower blooming
- Growing season length
- Most sensitive indicator of ecological response to our changing climate.

Biological Rationale in the Context of Global Climate Change

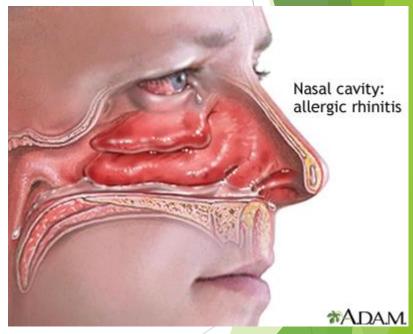
Ragweed Pollen Season Lengthens

Change in Ragweed Season Length (Days)



Credit: Ziska et al. 2011

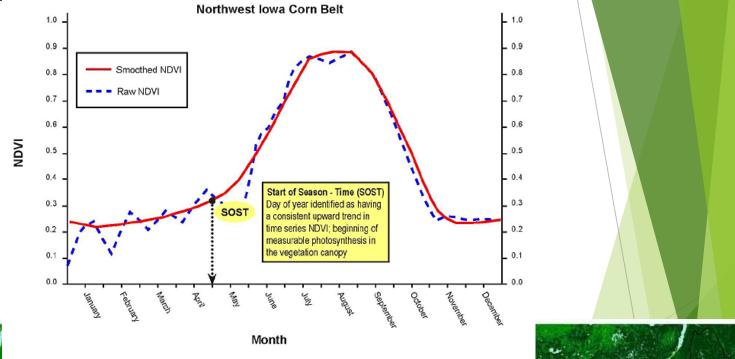
Ragweed pollen season & concentration: Results from a natural experiment


Urban areas:

- Longer growing season, and higher pollen concentration
- ➤ Warmer temperatures, and more carbon dioxide.

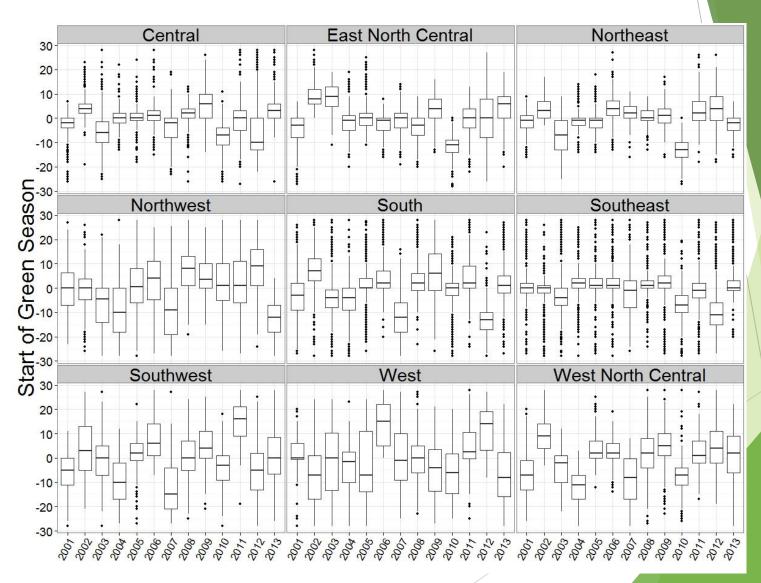
Implication to Allergic Disease

- Roughly 8% of US adults suffer from Hay Fever (17.6 million)
- \$12 billion every year on medical expenses for hay fever



Start of Season (Onset of Greening)

AVHRR NDVI - Summer



AVHRR NDVI - Spring

http://phenology.cr.usgs.gov/overview.php

http://phenology.cr.usgs.gov/methods_metrics.php

Temporal Trend in SOS Deviation by Climate Region

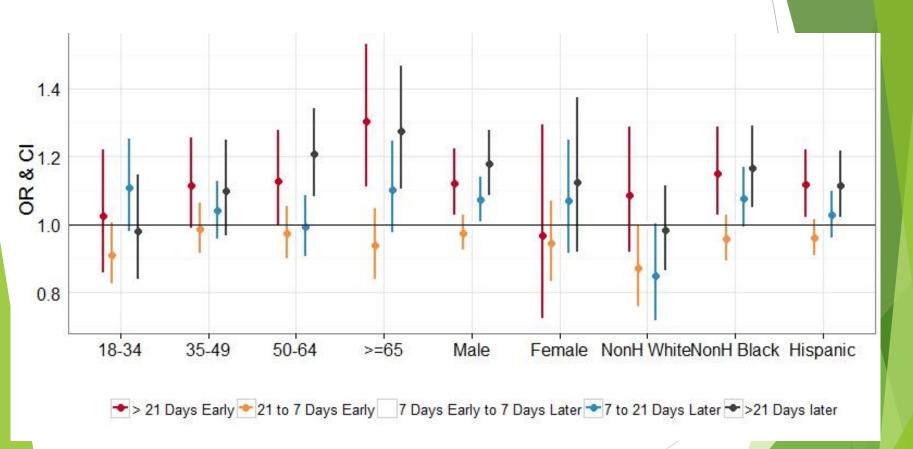
Health Data: National Health Interview Survey (NHIS)

- About:
 - Monitored the health of U.S. since 1957
 - Largest and principal source of information on the health of the civilian noninstitutionalized population
- Survey Methodology
 - Cross-sectional household interview survey
 - Samples and interviews continuously throughout each year
 - Sampling plan follows a multistage area probability design that permits the representative sampling of households and noninstitutional group quarters (e.g., college dormitories)

Methodology

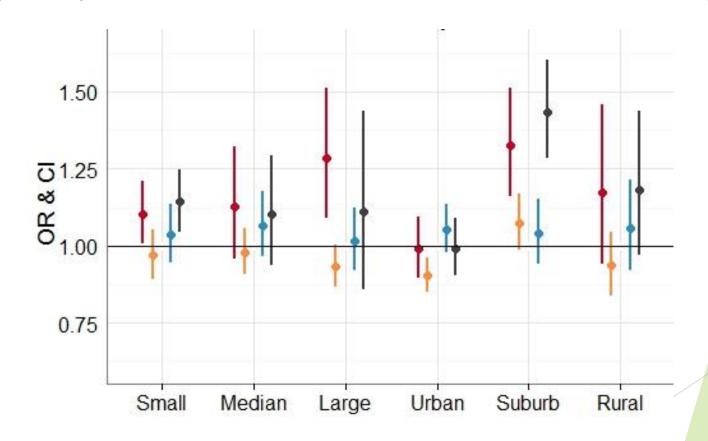
- Merge data by county FIPS and year
 - > 0.4 million respondents
 - ▶ Deviation in SOS and Hay Fever
 - The county SOS deviations were categorized into five categories of exposure
 - ► Very Early (more than 3 weeks early)
 - ► Early (1 to 3 weeks early)
 - ▶ Normal (within 1 week: REFERENCE)
 - ► Late (1 to 3 weeks later)
 - ▶ Very Late (more than 3 weeks later).
- ► Statistical Analysis:
 - Logistic regression using SUDAAN to accounts for the complex clustered sample design of the NHIS

Hay Fever & Phenology: Results


Overall Analysis

Changes in Onset of Greening	Un-Adjusted	Adjusted Model
> 3 Weeks Early	1.08[1.01-1.16]	1.13[1.05-1.22]
1-3 Weeks Early	0.96[0.92-1]	0.96[0.92-1.01]
Within 1 Week	Reference	Reference
1-3 Weeks Later	1.06[1-1.12]	1.05[0.99-1.11]
>3 Weeks later	1.05[0.99-1.12]	1.13[1.06-1.21]

Adjusted for Age, Race, Gender, Education, Insurance, Rural-Urban


Hay Fever & Phenology: Results

Hay Fever & Phenology: Results

by County Size & Urban/Rural Status

> 21 Days Early 21 to 7 Days Early 7 Days Early to 7 Days Later 7 to 21 Days Later >21 Days later

Hay Fever & Phenology: Summary

- Side note: Key determinants of exposure:
 - Frequency of contact to the agent
 - ▶ Duration of contact to the agent
 - Concentration of agent in the environment.
- ► Earlier onset of spring does appears to be a risk factor → Longer Duration of Exposure to pollen?
- Later onset of spring also appears to be a risk factor → More intense exposure within short period of time?

Acknowledgements

No Conflict of Interest

Funding:

- CDC's Climate-Ready States & Cities Initiative
- National Institute of Environmental Health Sciences

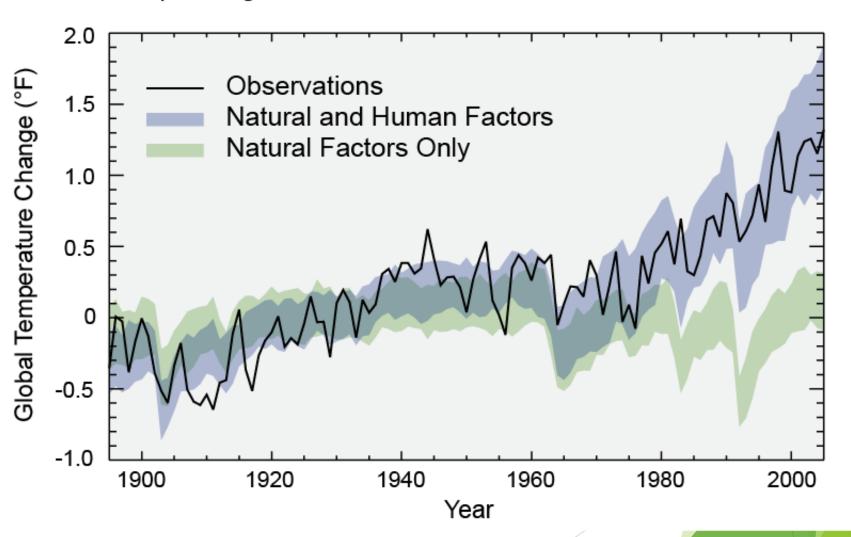
Collaborators

Dr. Cliff Mitchell, DHMH

Dr. Chengsheng Jiang, UMD

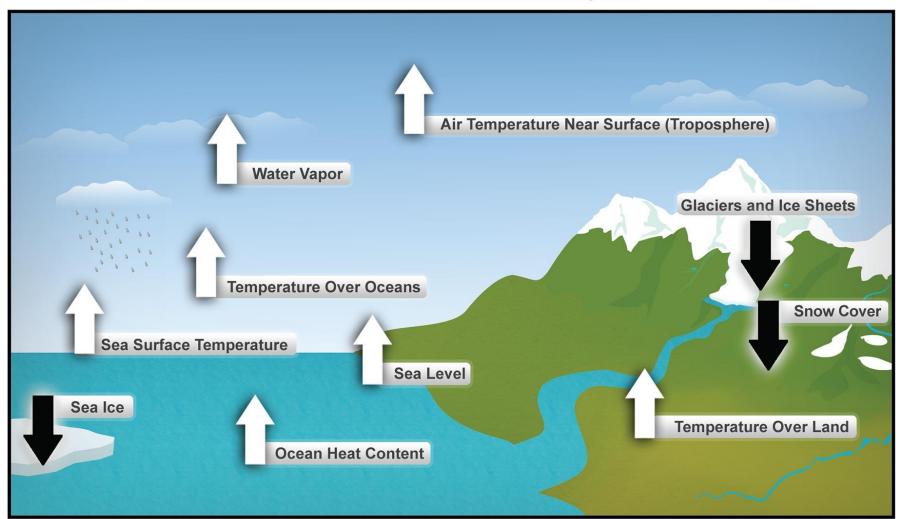
Dr. Sut Soneja, UMD

Dr. Raghu Murtugudde, UMD


Ms. Crystal Romeo-Upperman, UMD

Dr. Xin He, UMD

Mr. Jared Fisher, UMD



Separating Human and Natural Influences on Climate

National Climate Assessment http://nca2014.globalchange.gov/

Ten Indicators of a Warming World

